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We can reduce (2.13) to the form (2.10): 

k-1 

-&- [D'A (%)I = x Qj (E) 9) [PO (%)I + S G (~9 f) Y [P (~9 %)I du 

(il1, 2, 3) +=I 
R+ 

where Qi(%) are rational functions, while G (n, %), like F (u, f), satisfies the conditions 
of the theorem. 

Using (2.131, we can computer-evaluate automatically the coefficients of the power 
expansion of the Hamiltonian function II in the neighbourhood of an equilibrium position, up 

to any required order, provided, of course, that y is suitably smooth. In combination with 
methods for the automatic evaulation of normal forms H (e.g., the Depris-Hory method*, 

(*Markeev A.P. and Sokol'skii A.G., Some computational algorithms for the normalization of 
Hamiltonian systems, Preprint In-ta prikl. matem. Akad. Nauk SSSR, Moscow, 31, 1976.) we 
can obtain a method for a numerical-analytic study of the equilibrium positions of the problem 

mentioned at the start 

The author thanks 

of Sect.2. 

V.G. Demin for his interest. 
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APPROXIMATE SOLUTION OF SOME PERTURBED BOUNDARY VALUE PROBLEMS* 

L.D. AKULENKO and A.S. SHAMAYEV 

A perturbation method for solving some linear boundary-value eigenvalue 

and eigenfunction problems is developed and justified. The class of 

problem considered is frequently encountered in applications when 
investigating elastic oscillatory systems with distributed and slightly 

variable parameters (a string, an elastic shaft, a beam, etc.), described 

by boundary value problems for hyperbolic-type equations with variable 

coefficients. A procedure for the approximate solution of these problems 

is developed with the required degree of accuracy with respect to the 

small parameter characterising the non-homogeneity. In particular, 

Dirichlet's problem, describing the oscillations of non-homogeneous elastic 

systems with clamped ends, is considered. 

1. Formulation of the problem. The eigenvalue and eigenfunction problem for a 
linear perturbed second-order equation is considered in the real domain: 

*Prikl.Matem.Meklzan.,50,2,200-209,1986 
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((1 + ea (I)) xy + a= (1 + 4 (4) x = 0 U-1) 
x (0) = x (1) = 0, 5 E IO, II, e E IO, El, a0 > 0 

Here e is the parameter, and a.6 are specified functions from the class W; the prime 

denotes the derivative with respect to the scalar argument z. It is well-known /l-4/, that 

for fairly small e,>O, such that 1 + eo> c> 0, i + e6> 5 >O, a set of eigenvalues {L(e)) 

and eigenfunctions {X,(Z,E)}, n = i,2,..., which are orthonormalised with the weighting t& (2, 

e) = 1 + ~6 (2) , having the basis property, exists. 

For problem (1.1) it is required approximately to construct, with the specified degree 

of accuracy with respect to e the above set of eigenvalues and eigenfunctions, whilst the 

error estimates must be uniform with respect to n. 
If we assume E =0 in (1.11, the unknown solution is elementary: 

L(O) = sun, X,(O) (5) = JCZsin L(O) I, I( = 1, 2, . . . (1.2) 

The formal application of the perturbation method /l-4/ to problem (1.1) when a>0 
leads to an intrinsic difficulty connected with the ocurrence of "secular" terms of the form 

0 (ePnr), where p is the order of the degree of expansion. Indeed, the following expressions 

are obtained to a first approximation in e: 

Cpn, i (4 = & 1 [u(s) Xi? (s) + 2Qfb.,, &) ts) + 
* 0 

G?? (s) X$)(S)] sin ht)(z -~)a$ 

In a similar way to (l-3), subsequent expansions give expressions whose estimates have 

the form &pm np, X,,,. N np. Therefore, for fixed values of the parameter e and the order 

of expansion p the unkown quantities L(e), X,(z,e) with the numbers n>[s-rl will strongly 

differ from the true ones as much as desired, and the expansions will diverge. Thus, for 

speicified fairly small s>O the formal expansions converge and give a good approximation 

of the unkown quantities L, X, only for extremely small values of the number n, w<% 
which is unsatisfactory for using them asn approximate basis. 

These facts significantly complicate the use and justification of the perturbation method 

for a system of the form (1.1) compared with the frequently examined analogous problems of 

the form 

X' + iA2 + eV(z)l X = 0, X (a) = X (b) = 0 (1.4) 

Here the function eV(x) has the meaning of a perturbing potential. Perturbed problemsof 

thetype (1.4) often arise invarious areasof theoretical physics /3, 4/, for example in quantum 

mechanics. Regular e-power expansions of eigenvalues and functions do not lead to secular 

terms /l--4/. 
To clarify the reasons for the occurrence of secular terms, and to construct asymptotic 

expansions enabling us to avoid them, it is useful to consider a simple model problem of the 

form (l.l), which allows of a complete analytical solution (the case of Euler's equation) 

X” + ha (1 + es)-2X = 0, x (0) = x (1) = 0, 0 Q I e I < i (1.5) 

& (2, e) = a, (2. e) sing, (2. e), (X,. X& = 8, 

~(5. e)=[* 3 % (i + Es)“, 3p* (z, 8) = nn ‘;$+T 
h, (e) = nn (1 + 0 (e)), p (5, e) = (1 + .e.z)* 

It follows from Eqs.Cl.5) that X,-Xx,(p) = O((S@+~), where p > 0 is the order of the 

degree of expansion of the functions X,(z,e) in powers of e which are orthonormalised with 
weight p = (1 + EZ)“. The mechanism for the appearance of the secular terms is obvious and 
is connected with the "frequency" perturbation, i.e. the value of the derivative of the "phase" 
$Pn' = L(O) (1 + 0 (e)). 

A similar situation arises in the theory of non-linear oscillations /5-7/and is also 
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caused by the frequency perturbation. A successive correction of the oscillation frequency 
is carried out for the approximate analysis of perturbed oscillations over long intervals of 
time i.e. the corresponding expansions of the periodic solution have an asymptotic character 
/S-7/. 

In order to avoid secular terms appearing, we suggest a correction of the phase & 
(pn' = &,,@)(I + O(E)). We can achieve this by a corresponding replacement of the argument 
y of the form 

r+eEk d 
y= i+ee(i, 8) ’ E(z, ‘3)={p(r, 8)db 

dz* 8) = (6 (2) - (I (2)) [f + 8: (2) + (1 + 8U @))‘I* (1 + 88 (#*I-’ 

2 = Y + "'1 (Y, 4, Y E [O, il. X (z, e) s Y (y, e) 

since 

a~ by 

(1.6) 

In fact, for thenewunknown function Y (r/,e) the following boundary value problem of the 
type (1.1) is then obtained: 

Y’ + eh (II, e) Y’ -I- v*Y = 0 

Y (0) = Y (1) = 0, va = he (1 + e& (1, e))” 

h (sr, 8) b ig’ (i + eU) + CT’ (t $_ %)I (1 -t es)-’ h&en x 

(4 + 85 (1, 8))” 

(1.7) 

The function h(y, a) is obtained as a result of substituting (1.6). The calculations 
show that the formal application of perturbation methods to problem (1.7) leads to regular 
expansions of the eigenvalues v,,(e) and functions Y,(I/,e). The area of convergence with respect 
to e and the accuracy estimates do not depend on the number n =I,&.... It is easy to 
establish that the eigenfunctions Y~J are orthogonal with the weight 

x(y, e)=sxp[.[h(s, e)dP]=(l+E6(y+etl))(l+el)‘) 

Remark. It follows from an analysis of Eqs.cl.3) and the subsequent expansion coefficients 
L,,y.Xn,P,a,,p.~,,p when p > 1, that if the functions 6 (&c(z) E C") also have zero mean (a, = 

4 = 0). these coefficients will be quantities of the order of unity for all n>l and, in 
addition, w,,,,, =O(l&,(O)). Expansions of the unkown solution &,(e),X,(z,e) have a regular character. 
When 8,,0~#0 thesystemreduces totheabove formusinganelementaryidentity transformationof Eq. 
(1.1) and a.linear transformation of the parameter S 

(( i+e~)X’)‘+A:(l+e~)x=O, *-g 

Thus, if &a~@); then without loss of generality we can assume 6,==s@=O and can 
out regular expansions of the unknowns Ln.X, in powers of s. 

For subsequent analysis it is more convenient to reduce Eq.(l.l) to a corresponding 
system in the variables a,$: "amplitude - phase" 

X = asin*, X' = ao cos $, 0 = h (i + e6)'/* (1 + so)-'/= 

In the new variables a,$ boundary value problem (1.1) takes the form 

a' = 2ef (2, e) a cosa$, a (0) = a0 N 1 

$' = I[1 + ed (2,e)l + ej (2, e) sin 29, $ (0) = 0, 

3p (1) = nn 

f E --‘@’ (1 + &CT)-’ - ‘/$J’ (1 + cm)-‘, 

ed E (1 + e6)‘/1 (1 + eu)-'11 - 1 

carry 

(1.8) 

(1.8) 

The replacement (1.6) of argument z by y enables us - using a change of functions of the 
type (1.8) - to write the "amplitude - phase" variables equation (Y = b sincp,Y' = bv coscp)of 
the form (1.9) 

b' = eh (y, e) b cos? cp, b (0) = b” N i (1.10) 

q = v + Vaeh (y, e) sin 29, cp (0) = 0, cp (1) = nn 

Boundary value problem (1.10) is also obtained by direct replacement of arguments by y 
in Eqs.(l.9). 

The eigenvalue and eigenfunction problems in theform (1.9) or (1.10) are more convenient 
for the application of asymptotic methods of the small parameter, since the equation for the 
phase +# or q~ is integrated independently of the amplitude a or b respectively. The eigenvalues 
L(e) (or v,(e)) are obtained from the boundary conditions for 9 (or cp) After determining 

the phases (P,,(z,E), &(y,e) the equations for the amplitudes a,,,& are explicitly integrated 
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in quadratures. The corresponding integration constants a,,‘,b,,’ are calculatedin anelementary 
way from the normalization conditions of the functions X,(Z,E) with the weight p&s) and 
the functions Y,(y, e) with the weight x(y,s). The model problem (1.5) in the form (1.9) or 
(1.10) is also solved in an elementary way. 

2. Approximate solution of the boundary value problem. TO be specific problem 
(1.10) is considered. Problem (1.9) is analysed in a similar way; the unkowns u,(z,e),$,(z, 
e),%,(e) can also be obtained using a simple recalculationinterms of b,, (Y. s), cp, (Y. s). vn (s) 
using Eqs.cl.6) and (1.7). 

The unkown function q = (p(y,v,s), which is non-vanishing when y = 0, is constructed in 
the form 9 =vy j-a, where the unkown a = a(y,v,e) is a solution of the integral equation 

Y 

a@, v, e)=+ s h(s, e)sin2(vs+a(s, v, e))ds 
J 

The function a can be obtained as the limit of the sequence using Picard's method /8, 9/ 
(p = 0, 1, 2, . . .) 

v 

ap+l=-&ih(s, e)~in2(vs+ap)ds, a,~0 c (2.2) 

The integral operator in (2.1) satisfies the conditions of Banach's theorem on the com- 
pression operator (8) for all ye [0,11,v E R’, if the parameter e is small enough 

max 8 I h (Y, e) I =G x -c 1, e E lo, E,I, YE lo, il. x = c0nst 
& Y 8 

(3.3) 

The fundamental character of the sequence (2.2) is established on the basis of Banach's 
theorem, i.e. the existence and uniqueness of the limiting element a* (y.v,e), such that 

1 a* 1 < ce, l a*’ 1 < ce. l aa*/& l < ce (2.4) 
c = const, e E IO,e,l, y E IO, 11, v E R' 

As a result of the smoothness of the integrand in (2.1) the element a* is a continuously 
differentiable solution of the Cauchy problem 

a' = V2 & (y, e) sin 2 (vy + a), a (0) = 0 (2.5) 

It is established by induction that the successive approximations a,(y.v.e) (2.2) 
satisfy conditions (2.41, and the constant c is constructively determined using the properties 
of the function h (Y, s). 

For fairly small values e>O the successive approximations (2.2) give a power con- 
vergence with respect to s of‘the‘ functions a,, and their derivatives using the argument y 
and the parameter v 

I a* - ap ( < cewl, l a*’ - a,’ l < c@l (2.6) 
1 aa*/& - aa&% l < ce*+l, c = const, p = 0, 1, 2, . . . 

The first estimate (2.6) is obtained in a standard way from the inequalities 

A,,i<dAp. Ap+i5 &?", Ap~maxIep-sQp_i~ (2.7) 
Y 

B, D = CmN II = IO, il, 8 E IO, 8@1. p = 4, 2, . . . which directly follows from (2.2); then, according 
to (2.7), 

max la*- 
l&o. 11 

apl<k~Ak+i<D i ek+l< &‘+l 
k=e’ 

(2.8) 

In a similar way for App’ the maximum of the modulus of the difference of the derivatives 
with respect to y - the following inequalities are obtained bearing in mind (2.2): 

Aa1 6eBAp < D&‘+‘, e E [0, EO], p = i, 2, . . . (2.9) 

Using this estimate, the second inequality (2.6) is obtained in a similar way to (2.8). 
The last estimate in (2.6) is established using a chain of inequalities (the quantities A_~ 
are determined in a similar way to A,, and ,A*‘) 

A (2.10) 

On the basis of (2.10) it is established by induction that &,~~<EE~~, &=const, and the 

unkown estimate (2.6) follows from an estimate of the type (2.8). 



V, a), 

Thus, the recurrent procedure (2.2) enables us to construct the unkown phase 'p* = cp(y, 
q(O,v,e)= 0 with an arbitrary specified degree of accuracy with respect to a 

'p+ = vy -f- a,(y,v,e) -I- Acp,, I Acp, 1 Q CeP+l, C = const (2.11) 
After substituting 4p* = vy +a* (2.11) into the first Eq.(l.lO) the unkown amplitude 

b(y,v,a)(b> 6,)O) is explicitly obtained using an elenentary quadrature (see below). 
The approximate solution of Cauchy's problem (1.9) is constructed in the form 9 (5, a, 

e)=qPo(z,h,s)+ fi, where q,, also depends on e, and the unkown function fi is calculated in a 
similar way to a. The phase $ can also be obtained using substitutions according to (1.6), 
(1.7), and the amplitude a can be obtained using a quadrature according to (1.9). 

The unknown eigenvalues Y,,(E) of the boundary value problem are obtained from the 
corresponding condition (1.10) when 
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** (l, Y, e) = v + a* (I,v, a) = nzz, n = 1, 2, . . . (2.12) 

For fairly smalls> 0th quantities V, are constructed using successive approximations 
using the scheme (I% = O,I, . ..) 

v,@+l) (E) = nn - a* (1, v,(~) (e), E), v,(~) = nn (2.13) 
From estimates (2.4) fox a*and a, are obtain 

Statement. The successive approximations (2.13), when e>O is uniformly fairly small 
with respect to n, converge to a unique solution of Eq.(2.12) 

~~v$'(~)=v,,*(s), n-11, 2, . . . . EE[O, eO], eoc<l (2.14) 

I vn* (8) - ,) (8) I< f&3*+‘, K = const, v?) = 7In + #' 

v,* (8) = nn. + 'yn* (8). / $’ 1, I yn+ I< Fe, P = conet 

If we substitute the (p -!- *)-approximation c+(~,v,E) into (2.121, (2.13) instead of a* 

the following uniform estimate holds: 

~vn*(e)-v~~‘~(e)~~,<Keptz, k=O, i,...,p, /K=comt (2.S) 

To construct a set of eigenvalues (Vn(8]) we shall also use the tangent method (Newton's 
method /a/), which gives quadratic convergence with respect to e 

v (k+l) = Inn - II a* (1, v~@), s) + (a/&) a* (1, V,@), 8)) X 
I1 + (Wv) a* (i, vn@), e)P 

v,@) = m, k = 0, 1, . . .* 1 v,* - ,,,*+I I < K (ef, K = COIN 

After the eigenvalues v,,(e) are obtained according to (2.11), (1.101, the unknowns 

cp,, bnr b.,", Y, are determined in the following way (n,m = i,2, . ..). 

cp, (y, e) = v,* (e) Y + a’ (I/, v,* TV), e) = (P,(P) + bd”,tr~ (2.16) 

b,(y, e)=b,“(e)exp[--e [ k(s, e)coe~cp,ds]=b$)+Ab~) 
I3 

Here {Y,,) is a complete set of eigenfunctions which is ortbonormalised with weight 

x (ar, 8). On substituting the approximate expressions %,v,(P) into (2.16), the quantities 
cp,,,b,, and Y,,are determined with an error of the order #+I; the condition of orthononnality 
for {Y,,(P)} holds with the same error. 

Statement. When e> 0 is fairly small we have the estimates 

Y,,= YfP’ i_ AY*’ Yg’ = @‘sin q$', 1 AY$” 1 Q C@‘+’ 2.17) 

For the approximate basis (YSW>" 'the approximate conditions of orthonormality hold (6, 

is the Kronecker delta) 

The proof of Eqs.(2.17), (2.18) directly follows from the properties of uniformity of 

the errors for I++,, b,,, established above. 

Remark lo. The analyticity of Eqs.(l.lO) with respect to p, b enables us to obtain t.hiS 
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result using expansions of the unkonw quantities in powers of the small parameter e. The 
justification is carried out using Cauchy's majorant function method and using other analytical 
methods of the theory of perturbations /2, 10, ll/. 

Remark 2O. The above results can be directly transferred to the problem of constructing 
the functions ~(z.E).I+,(~.E),~@). &,(~,a) - the unkown solution of problem (1.9) and its 
equivalent initial boundary value problem (1.1). As already mentioned above, these quantities 
are obtained by a simple recalculation using the replacement Eqs.(1.6), (1.7). 

Remark 3O. Sets of eigenvalues and eigenfunctions are constructed in a similar way for 
other types of linear boundary conditions, for example 

and some others. 

3. Approximation _ _ 

rl, (0) = --n/27 9 (1) = (n - V2) n (X’ (0) = X’ (1) = 0) 

9 (0) = 0, 9 (i) = (n - I/*) n (X (0) = X’ (1) = 0) 

t--k sin rp T (1 + 03) 0 cc.3 l#],,, 1 = 0 

U--kX F (4 + eu) X'l,,, = o), n = I, 2, . . . 

of functions using the approximate basis of the boundary 
value problem. Suppose f(y)= C,@) is an arbitrary function from classes which are 
doubly continuously differentiable for y&O, 11 and non-vanishing when y = 0,1. Then we 
have the uniform convergence of Fourier's series 

f(y) = Sl f, (4 Yn (y. e), fn = (f, Y,h 

The convergence of series (3.1) is caused by the rapid decrease in the Fourier coefficients: 

fn (4 - sa (8) and the boundedness and smoothness of the set of functions {Y, (Y, s)). 
Since it is possible in practice to construct the functions Y,, with finite degree p 20 

of accuracy with respect to e (the error O(e*l), see Sect.2), for the function f(y)c=CiP) 
and can then, according to (3.1) and (2.17), (2.18), propose an approximation of the form 

f @I - fcp) (Y, 8) = jti f? (4 YAP’ (Y, 4 (3.2) 

There arises the natural problem of the convergence of series (3.2) and of the degree of 
closeness of the functions fW(y, e) and f(y) for y~[O,1] and all e E IO. e,l. 

Statement. When s>O is fairly small for the arbitrary function f(y)" C,(*) series 
(3.2) converges with respect to the Hilbert norm of the space L, to the function f@) (Y. 8) 
and we have the closeness estimate 

II f(Y) - f @) (y. 8) III._ < Cep+‘, c = con& (3.3) 

The proof is based on Caughy's fundamental criterion /l, 8/. An identity difference 
transformation is carried out (i<M<N<m) 

(3.4) 

The series segments - the sums S1,SI - are then estimated using the norm L,- Elementary 
trigonometric formulas are used to calculate the quantities 

According to (2.16), we have 

f,,-f!$')= -2(b,sin 'p, Sian/&$'), f), + (3.6) 
(b,cosg,sin Aqhp), f),- (Ab?) sin tp,, cm Aq$f), f), - 

(Abip) sin tp,, sin A@‘, f),, n > 1, p > 0 

The scalar products are calculated using integration by parts. At the same time we bear 
in mind estimates (2.16) for A~I,,(~),A~,,(~) and the estimates 

~(I~~:I-'+I(P~"I(~,')~)~=, Ib,‘!l+IAcp~py~<c, c=const 

As a result for the coefficients (3.6) we obtain the estimates 

If,-@'Kc"- 8 1 1 ?3+1 n=i,2,..., C=const (3.7) 

In a similar way, bearing in mind the estimates I’~~)‘+‘~InP)‘I-l~elnf:mI-l, n#m, estimates 
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of the coefficients in (3.5) are obtained 

I (YF), Yt,p')xI<C ((n +m)-'+ I n-ml-i), n#m 

From inequalities (x.7), (3.8) there directly follows the estimate 

(3.3) 

(3.9) 

Majorising the dual sum in (3.9) using dual integrals of the form 

ss ds dy ss dt dy 

zr(t+u) ’ wlz-ul 

we can obtain the unkown inequality 

II Sl n, a 4 2(P+1)‘4 (M, N); * ‘4 -t 0, 

Here the function A(M,N)<x, where x>O is as 
M(x) and arbitrary N>M, i.e. Cauchy's fundamental 

M-co, N>M (3.10) 

small as desired for fairly large ,M= 
criterion for n.%ry. 

To estimate the quantity Q&Q&' in (3.4) we need to use the following estimate of the 

Fourier coefficients, which follows from (1.7): 

I fn I < ffn? (% - 4, f b) E co@), y E K4 11 

According to (2.17), the estimate QY,,- Y,,@')~<C$'+' is obtained; therefore 

QSaQ~8Q~2(P+1)B(M, N); B-0, M-roe, N>M 

The validity of the statement follows from (3.4), (3.10), (3.11). 

(3.11) 

Remark. (0 Suppose j(z)= C,,, 1.e. f is an arbitrary function which is continuously differ_ 

entiable 1 times (1>2), and which is non-vanishing when z=O,i together with derivatives 
to the (1-2)-th order; the functions o(z)and ii(z) are continuously differentiable (I-l) and 

(1 - 2) times respectively. Then for the Fourier coefficients fn(@ using the basis {X,(z,e)) 
the following estimates hold: 

f, (8) = en* (6) n-‘, 1 a,* 16 a+ = const (j, = (f, X&) (3.12) 
The differences between the Fourier coefficients in the accurate and approximat& bases 

satisfy estimates that are uniform with respect to L for all e~[O,e,] 

I f, (E) - flP’ (e) I d C& WI, c = const (fp = (f, Xf’),) (3.13) 
The sequence Of values of the SIXill parameter e,,: c,(6)- e,6z+/@+*) is chosen, where 6,=[0,1). 

As a result of substituting the quantities f,,(e) of (3.12)into (3.13) when a=a,, we obtain the esti_ 
mates (n = 1, 2,. . .) 

1 f?’ (8,) I < tc (e4p+z + I a,* &)I1 n-l< ,cg+l + a*) n-1 (3.14) 

According to (3.14), the coefficients j,,@)(e) decrease as quickly with respect to n as fn, which 
guarantees the uniform convergence of the corresponding series; in addition,the following esti- 
mates hold: 

ju"' (E) = a*,'" (8) n-1, ” 1 a,* (e) - a;(*) (E) I< d9+1 I I j, (E) - jr’ (E) I < d@‘+%a-’ , d =const (3.15) 

The estimateof the closeness, with respect to 8, of the approximating series j@)(z,~)' for 
j(z) when z~[O,1] and e~[O,%I follows from (3.15) 

1 j (2) - f(P) (2, E) I < w+‘, j E cp2 (3.16) 
p > 0, I>, 2, D = const 

The results obtained justify the use of the asymptotic perturbation method to approximate 
the functions a’f19xr, r = 0, 1, . . ., 1 - 2 from the fairly smooth class C!$((E > 2) using the 
approximate basis {X,@)(z,e)}. 

4. Application to boundary value problems. The above procedure can be used for 
approximately solving the problems of socillatory systems with distributed parameters of the 
hyperbolic type, which are frequently encountered in applications. The following perturbed 
problem is considered: 

11 -i- 88 (z)lu” = [(I + ea (I)) u’l’,, u = u (t, I, e) 
6 (z), u (2) E C(l), 5 E [O, 11, e E IO, e,l 
u (t, 0, c) = 24 (t, 4, e) = 0, t E LO, Tl 

(4.1) 

u (0, 2, e) = cp (2) E C@@), U’ (0, 5, e) = J, (5) E C(l) 
Here the points indicate the derivatives with respect to time t, and the primes denote 

the derivatives with respect to the coordinate x. The equation of oscillations of an elastic 
system with linear inertial and rigid characteristics that slightly change along the length 
reduces to the form (4.1). 

For fairly small e,>O the solution of problem (4.1) is constructed using Fourier's 
method in the form of series using the orthonormalised eigenfunctions X, (2, e) of the 
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eigenvalue and eigenfunction problem (1.1) 

.(4.2) 

P Of 
u@) 

p,, (tl 8) = a,, (8) CO9 h, (8) t -k b, (8) li?? (8) Sin 11. (8) t 

a, = (cps X&s b, = (9. X&r P = 1 + 86 

Suppose, according to Sects.l-3, the basis {X,} is constructed with the specified degree 
accuracy with respect to e (the error 0(8P+l)) and the following analogue of the solution 
is obtained: 

U(P) (t, t, e)= $ F?)(t, e)X?),(z, e) 
n-a 

(4.3) 

On the basis of the results obtained, particularly the estimate of the type (3.3), the 
closeness of the solution u (4.2) and its @ + 11th approximation 
We have the following 

IL@') (4.3) is established. 

Statement. For the functions U (t, 5, 8) (4.2) and 0) (t, z1 e) 
estimate 

max II u - u@) 11~ < Cep+l, c = c0nst 
ta4 Tl 

for e E [O,e,l, where so>0 is fairly small. The constant C>O 
in terms of the coefficients of problem (4.1). 

(4.3) we have the closeness 

(4.4) 

is constructively determined 

Suppose the function u#)(t,z,e) is determined - the finite Fourier sum using the approxi- 
mate base of (4.3) 

We can then establish that the following holds: 

Statement. With an appropriate choice of N = N(8) for fairly small e,> 0 the 
following uniform estimate holds: 

yap 1 u - I&’ 1 < Ced, d = (1 - I-') @ + I), c = COnSt (4.6) 

Here 122 is the order of the class of smoothness of the functions cp,$ in (4.1), and 
the quantity N(e) is assumed to equal 

N = N (8) = No87 y = (p + 1) I', N, = con&, 8 E 10, 8@1 

Inequality (4.6) is directly obtained from the following: 

for the above choice of 
equations 

Inequalities (4.8) 
statement (4.6). 

y,’ I u - up I< D (Nep+’ + N-*+1), D = co*st (4.7) 

the quantity N=N(e). In turn, estimate (4.7) is established using the 

I u - up I < s, + 8, + s,, : E D, Tl, z 6 to, 11, e E to. &I a(4.8) 

&=I 5 (P,- P$')) X, I< 4NeP+l 
n-1 

directly reduce to estimate (4.7), and the latter reduces to the 

Thus, for fairly large I> 2 for a good approximation of the solution u(t,s,e) (4.2) or 

problem (4.1) using the function z&'(t, t, 8) (4.5) we Can take the relatively small number 
N = N (8) of terms of series (4.3). For the first derivatives of the solution ZJ (t, 2, '9 
(4.2) with respect to t and z the estimates for 2>3 which are similar to (4.6) hold: 

max 1 IA’- u$“’ I<Ced, 
t, = 

max 1 u'- &"I <Cad 
t, x 

d = (1 - 21-') (p + i), t E 10, T], I E IO,*], 8 E 10, 4 

(4.9) 
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In general for derivatives of any order k 

k at%r ’ 
m+r=k, 

estimates of the error O(&) are similar to 

(k + 1) l-l1 Cp + 1) > 0. 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

O<m, r<k,<l-2 

(4.6), (4.9) with the exponent d = d(k) = [I- 

REFERENCES 

RIESS F. and SEKEFAL'I-NAD B., Lectures on functional analysis. Moscow, Mir, 1979. 
KATO T., Theory of perturbations of linear operators. Moscow, Mir, 1972. 

MORSE F.M. and FESHBACH G., Methods of theoretical physics. 2, Moscow, Izd-vo inostr. lit., 

1960. 

TITCHMARSH E.CH., Eigenfunction expansions connected with second-order differential 

equations. Moscow, Izd-vo inostr. lit., 1, 1960; 2, 1962. 

BOGOLYUBOV N.N. and MITROPOL'SKII YU.A., Asymptotic methods in the theory of non-linear 
oscillations. Moscow, Nauka, 1974. 

MALKIN I.G., Some problems of the theory of non-linear oscillations. Moscow, Gostekhizdat, 

1956. 

AKULENKO L.D., Investigation of the steady-state modes of perturbed autonomous systems 

is critical cases. PMM, 39, 5, 1975. 

KOLLATS L., Functional analysis and computational mathematics. Moscow, Mir, 1969. 

ZABREIKO P.P. et al., Integral equations. SMB. Moscow, Nauka, 1968. 

10. GOLUBEV V.V., Lectures on the analytical theory of differential equations. Moscow-Leningrad, 

Gostekhizdat, 1950. 

11. ERUGIN N.P., Implicit functions. Izd-vo LGU, 1956. 

Translated by H.Z. 

PMt4 U.S.S.R.,Vol.50,No.2,pp.154-160,1986 oo21-8928/86 $10.00+0.00 
Printed in Great Britain 01987 Pergamon Journals Ltd. 

THE TECHNICAL STABILITY OF PARAMETRICALLY EXCITABLE DISTRIBUTED PROCESSES* 

K.S. MATVIICHUK 

The technical stability /l, 2/ - in a finite interval of time - of 

parametrically excitable processes with distributed parameters, i.e. 

processes described by partial differential equations with time-dependent 

(particularly time-periodic) coefficients, is investigated. Using the 

comparison method /3-6/in conjunction with Lyapunov's second method /7/, 
the sufficient conditions for technical stability /l-6/ with respect to 

a specified measure are obtained. The determination of the corresponding 
differential inequalities of the comparison /4/ rests on the extremal 

properties of Rayleigh's ratios for selfadjoint operators in Hilbert 

space /8-12/. This approach is connected with the solution of the 
eigenvalue problem. The results obtained are used to establish the 
sufficient conditions using the specified measure in the problem of a 
clamped support /9/ loaded with some longitudinal force, particularly one 
which is time-periodic. At the same time the domain of technical stability 
is connected with the small parameter and the conditions of positive 

definiteness of Lyapunov's functional and the boundedness of the correspond- 

ing eigenvalues /ll, 13, 14/. The technical stability of distributed- 

parameter systems for constantly acting perturbations have been investigated 

previously /l/, and the technical stability of processes with after-effect 

was examined using an axiomatic approach /2/. The problem of the technical 

stability of some systems which simultaneously contain distributed and 

lumped parameters was considered in /15/. 

1. A theorem on the technical stability of parametrically excitable 

processes. Consider a class of dynamic processes inthedomain DC RV with boundary C, 

where RV is a v-dimensional Euclidean space with the vector of coordinates m = (51, . . ., 2,). 

*Prikl.Matem.Mekhan.,50,2,210-218,1986 


